A Monte Carlo code for positive ion track simulation.

نویسندگان

  • W E Wilson
  • H Nikjoo
چکیده

An ion interaction model has been described for simulating positive ion tracks in a variety of media with the capability of interfacing with several secondary electron transport codes. Data are presented for single-and double-differential cross-sections, binding energies, probability density distribution for delocalisation parameters for conductors and tissue, branching ratios and ionisation efficiencies for water vapour and liquid water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of dose distribution of 12C ion beam in radiotherapy by FLUKA as a Monte Carlo simulation Code

Introduction: Nowadays, the use of heavy ion beams in cancer therapy have been developed worldwide.   Materials and Methods: It requires accurate understanding of the complex processes of ion interaction with matter, as it is the calculation the relative dose & range of these ions in matter. In the present study we used FLUKA as a numerical Monte Carlo simula...

متن کامل

A method for range calculation of proton in liquid water: Validation study using Monte Carlo method and NIST data

Introduction: The main advantage of using ion beams over photons in radiotherapy is due to their inverse depth-dose profiles, allowing higher doses to tumors, while better sparing normal tissues. When calculating dose distributions with ion beams, one crucial point is the uncertainty of the Bragg-peak range. Recently great effort is devoted to enhance the accuracy of the comput...

متن کامل

An Efficiency Studying of an Ion Chamber Simulation Using Vriance Reduction Techniques with EGSnrc

Background: Radiotherapy is an important technique of cancer treatment using ionizing radiation. The determination of total dose in reference conditions is an important contribution to uncertainty that could achieve 2%. The source of this uncertainty comes from cavity theory that relates the in-air cavity dose and the dose to water. These correction factors are determined from Monte Carlo calcu...

متن کامل

Monte Carlo computation of dose deposited by carbon ions in radiation therapy

Background: High-velocity carbon ion beams represent the most advanced tool for radiotherapy of deep-seated tumors. Currently, the superiority of carbon ion therapy is more prominent on lung cancer or hepatomas. Materials and Methods: The data for lateral straggling and projected range of monoenergetic 290 MeV/u (3.48 GeV) carbon ions in muscle tissue were obtained from the stopping and range o...

متن کامل

Siemens primus accelerator simulation using EGSnrc Monte Carlo code and gel dosimetry validation with optical computed tomography system by EGSnrc code

Monte Carlo method is the most accurate method for simulation of radiation therapy equipment. The linear accelerators (linac) are currently the most widely used machines in radiation therapy centers. Monte Carlo modeling of the Siemens Primus linear accelerator in 6 MeV beams was used. Square field size of 10 × 10 cm2 produced by the jaws was compared with TLD. Head simulation of Siemens accele...

متن کامل

Assessment of Effect Technical Directional Bremsstrahlung Splitting (DBS) on Spectra and Parameters of Simulation with Monte carlo Method BEAMnrc Code (Study Monte Carlo)

Introduction: Previous studies have shown that a Monte Carlo method for the transportations photon beam in medical linear accelerator is a good way. Strip of simulation can be used to measure the dose distribution in phantoms and patients' body. EGSnrc Code is the only code written for use in the field of radiation therapy that has many subset codes that BEAMnrc code is an impo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Radiation and environmental biophysics

دوره 38 2  شماره 

صفحات  -

تاریخ انتشار 1999